Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time

نویسندگان

  • Tzyy Yue Wong
  • Chiung‐Hsin Chang
  • Chen‐Hsiang Yu
  • Lynn L. H. Huang
چکیده

Hyaluronan (HA), an abundant polysaccharide found in human bodies, plays a role in the mesenchymal stem cells (MSCs) maintenance. We had previously found that HA prolonged the lifespan, and prevented the cellular aging of murine adipose-derived stromal cells. Recently, we had also summarized the potential pathways associated with HA regulation in human MSCs. In this study, we used the human placenta-derived MSCs (PDMSC) to investigate the effectiveness of HA in maintaining the PDMSC. We found that coating the culture surface coated with 30 μg cm-2 of HA (C) led to cluster growth of PDMSC, and maintained a higher number of PDMSC in quiescence compared to those grown on the normal tissue culture surface (T). PDMSC were treated for either 4 (short-term) or 19 (long-term) consecutive passages. PDMSC which were treated with HA for 19 consecutive passages had reduced cell enlargement, preserved MSCs biomarker expressions and osteogenic potential when compared to those grown only on T. The PDMSC transferred to T condition after long-term HA treatment showed preserved replicative capability compared to those on only T. The telomerase activity of the HA-treated PDMSC was also higher than that of untreated PDMSC. These data suggested a connection between HA and MSC maintenance. We suggest that HA might be regulating the distribution of cytoskeletal proteins on cell spreading in the event of quiescence to preserve MSC stemness. Maintenance of MSCs stemness delayed cellular aging, leading to the anti-aging phenotype of PDMSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation Potential and Culture Requirements of Mesenchymal Stem Cells from Ovine Bone Marrow for Tissue Regeneration Applications

Objectives- To isolate, culture-expand and differentiate mesenchymal stem cells from ovine bone marrow and determine their culture requirements for high expansion rate. Design- Experimental study. Animals- Five Shal sheep. Procedures- In this study, ovine marrow cells were plated and culture expanded through 3 successive subcultures. The resultant cells were then plated at differentiating condi...

متن کامل

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

Evaluation of Neurogenic Potential of Human Umbilical Cord Mesenchymal Cells a Time- and Concentration- Dependent Manner

Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipoge...

متن کامل

Mesenchymal Stem Cells: History, Isolation and Biology

Mesenchymal stem cells (MSCs) as a kind of adult stem cells possess two properties of long term selfrenewal ability and multilineage differentiation potential into skeletal cell lineages. MSCs were first isolated and described from bone marrow samples. Further investigations have identified several other tissues as alternative sources for these cells. In spite of the clinical importance of MSCs...

متن کامل

Harvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells

In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017